

Department of the Environment

2007 Ozone Season

Status, Trends, Continuing

Tad Aburn, Director Air & Radiation Management Administration Maryland Department of the Environment

Progress

Presented at: OTC Fall Meeting Arlington, VA November, 14 2007

Topics Covered

- Trends and Continuing Progress
- Snapshot of 2007 Ozone Season
- The New Standard
 - Future Challenges

Take Home Messages

- We've made tremendous progress in reducing ozone over the past 5 years
- Attaining the 8-Hour Standard by 2010 continues to be a challenge for much of the OTR
- Complying with an even tougher ozone standard will be even more challenging
- The NOx reduction programs for power plants are working – working very well

8-hour Exceedance Days and 90 Degree Days

Federal 8-hour ozone exceedances vs. ≥ 90 degree F days at BWI

Where's The Red?

MDE

- Ground-level ozone has improved significantly from the mid-90s to recent years.
- Percentage of days reaching Unhealthy for Sensitive Groups (USG) AQI levels or above have dropped from 23.8% (1996-2002) to 12.3% (2003-2007), an improvement of 48.3%.
- While "Bad" air days have been decreasing rapidly, "Good" air days have also been increasing rapidly.

Air Quality Index

101-150

151-200 Unhealthy 201-300 Very Unhealthy 301-500 Hazardous

51-100 Moderate

Good

AQI - Ozone or PM Driven?

- 8-hour ozone is primary pollutant during high pollution events (Unhealthy for Sensitive Groups or above).
- However, particle pollution is an important part of overall air quality in Maryland, especially for Moderate Days.

Air Quality Index

101-150 UGS 151-200

Unhealthy

201-300 Very Unhealthy 301-500 Hazardous

51-100 Moderate

0-50 Good

Hot Weather and High Ozone – A Shift?

Maryland's 8-Hour Ozone Exceedance Days

MDE

- Standardized departure of both 8-hour ozone and 90 deg days at BWI follow a periodic cycle through 2002. Correlation is 0.66 (This is what makes air quality forecasting possible!)
- Why is 8-hour ozone exceedance days in Maryland consistently below normal between 2003-2007 despite what the temperature data tell us otherwise?

MDE Hot Weather and High Ozone Less Ozone When It's Hot – Could It Be Controls Are Working?

Maryland's 8-Hour Ozone Exceedance Days

- Standardized departure of Maryland's 8-hour ozone and 90 deg days at BWI follow a periodic cycle through 2002. Correlation is 0.66 (This is what makes air quality forecasting possible!)
- Temperature data at BWI indicates a flat trend from 1981-2007. Climatology doesn't change during that time frame.
- BUT 8-hour ozone data clearly indicates a downward trend.
- Explanation for hypothesis: air quality trend is entering a new phase!

Note: Some preliminary AQ data are also included in analysis.

Hot Summers And High Ozone – A Change?

Have Transport Patterns Changed?

1992-1995 8-hr ozone exceedance days 165 days or appx. **41 days/year**

1996-1999 8-hr ozone exceedance days 167 days or appx. 42 days/year

2000-2002 8-hr ozone exceedance days 90 days or appx. 30 days/year

2003-2007 8-hr ozone exceedance days 96 days or appx. 19 days/year

- Westerly, southwesterly, and northwesterly flow (highlighted in red) dominate all periods. These are common for long range transport (hundreds to thousands of kilometers)
 - South / southeasterly flow (highlighted in yellow) are persistent in all periods. This flow pattern is a good example of short range transport (tens to hundreds of kilometers).
- North / Northwesterly flow (highlighted in blue) are persistent for periods from 1996-2006).
- Northeasterly / Reverse corridor flow (highlighted in green) are persistent during the first and last period.
- Overall transport patterns have not changed that much over the past 16 years.
- Decrease in "bad air quality days" through the periods are driven primarily by controls.

Mean clustered of 24-hr back trajectories terminating at BWI (1000 m-agl) at 11 UTC (6:00 EST). EDAS, NGM, and Reanalysis Meteorological data. Time ensemble trajectories for each clusters in each period can be found in Appendixes A1-A4.

Note: (a) Visit <u>NOAA ARL HYSPLIT Model</u> website for further information on back trajectory. (b) Visit EPA's National Emission Inventory (<u>NEI</u>) Database website for further information on emission data.

Where are Major NO_x Point Sources?

MDE

1999 emission data from NEI database show "BIG" NO_x point sources are located along Ohio River Valley region, portion of the Southeast, and Southern Mid-Atlantic region.

Note: Emission data extracted from the EPA's National Emission Inventory (<u>NEI</u>) Database.

SCRs Being Installed

Selective Catalytic Reduction (SCR) technology are implemented at many units to reduce NO_x emissions (one of the ozone precursors). Majority of **SCR installations** as of 2006 are **happening where the controls are needed the most** (i.e. the Ohio River Valley).

Note: (a) Emission data extracted from the EPA's National Emission Inventory (<u>NEI</u>) Database. (b) SCR installation data comes from the <u>Institute of Clean Air Companies</u> (ICAC).

SCR Units Over Time

Data courtesy of The Institute of Clean Air Companies (ICAC).

NO_x Emissions Over Time

U.S. Nitrogen oxides (NO_x) emissions from electricity generation, 1995-2030 (million short tons)

RAPID decline in NOx emissions after Phase II of NO_x Controls. It coincides with a SHARP decrease in ground-level ozone across the eastern U.S. during 2003-2007.

Figure extracted from the "Annual Energy Outlook 2007 with Projections to 2030" report. Additional information can be found at <u>Energy Information Administration</u> (EIA) website.

EPA Analysis – Same Results

Ozone Season NO_x Emissions from All NOx Budget Program (NBP) Sources

MDE

Figure extracted from EPA's NOx Budget Program 2006 Progress Report. Visit Clean Air Markets website for further details.

NOx Reductions - Geographically

Figure extracted from EPA's <u>NOx Budget Program 2006 Progress Report</u>. Visit <u>Clean Air Markets</u> website for further details.

2006 Weather and Ozone

Despite of higher than normal pressure pattern during Jun-Aug 2006, 8-hour ozone counts are well below normal across the Northeast, Mid-Atlantic, and portions of Midwest.

MDE

2007 Weather and Ozone

Slightly below normal and normal pressure patterns are observed during Jun-Aug 2007. 8-hour ozone counts continued to remain well below normal across the Northeast, Mid-Atlantic, Southeast, Plains, and Great Lakes regions.

BEFORE the majority of **SCR Units were installed**, much of the **Eastern U.S. do not meet** the 8-hr **ozone standard**.

The **FIRST** year of "**Transition Phase**" when most SCR Units were installed. **No major change noted in the attainment status** for 8-hr **ozone**.

The **SECOND** year of "**Transition Phase**" when most SCR Units were installed. A **notable number of monitors went into attainment**. Although temperatures and precipitation during the summer of 2004 were not conducive for ground-level ozone formation, they are not the sole reason for reduced ozone.

AFTER the **majority of SCR Units** were **installed**, **much of the Eastern U.S. went into attainment**. Temperatures and precipitation data for the summer of 2005 were conducive for ground-level ozone formation. However, strong decrease in regional ozone concentrations occurred.

Ground-level ozone in the Eastern United States continues to show significant improvements in 2006 despite meteorological conditions that favored poor air quality. 8-hour ozone design values for many monitors along the I-95 corridor, especially downwind of Maryland, went from non-attainment status in 2005 to attainment status in 2006.

Ozone Season Trends in Maryland

Approximately 15 ppb decrease was observed from 1990s to 2000s.

Ozone Season Trends in Maryland (With 2007 Data)

• 2007 data shifted the trend line for the last period (2003-2007) slightly upward.

 However, the overall progress remains at approximately 14 ppb as observed from 1990s to 2000s.

Reducing Transported Ozone

• Approximately 15 ppb decrease was observed from 1990s to 2000s.

MDE

Ozone Episodes – Fewer and Shorter

This is the evidence that ozone plume has been shrinking.

2007 Ozone Levels

Meeting a New Ozone Standard

OTC Attainment and Sensitivity Modeling for Ozone

AIRS-ID	State	Monitor	2002	2012 BOTB/OTW	2018 SensEGU
340290006	NJ	Colliers Mills	106.0	86	81
90013007	СТ	Stratford	98.3	86	83
361030009	NY	Holtsville	97.0	86	82
420170012	PA	Bristol	99.0	84	80
90093002	СТ	Madison	98.3	83	81
340070003	NJ	Camden	98.3	83	81
340155001	NJ	Clarksboro	98.3	83	80
90010017	СТ	Greenwich	95.7	83	81
340071001	NJ	Ancora St. Hos	100.7	82	79
421010024	PA	Northeast	96.7	82	79
340210005	NJ	Rider Univ.	97.0	81	77
510130020	VA	Arlington Co.	96.7	80	75
510590018	VA	Fairfax Co.	96.7	79	75
361030002	NY	Babylon	93.7	82	82
361192004	NY	White Plains	91.3	82	82
90011123	СТ	Danbury	95.7	81	78
90019003	СТ	Westport	94.0	81	79
90099005	СТ	Hamden	93.3	81	79
340030005	NJ	Teaneck	91.7	81	81
240251001	MD	Edgewood	100.3	80	77

New Ozone Standard – 60 to 75 ppb

Special Thanks

Duc Nguyen, MDE

❑Matt Seybold, MDE

Mike Woodman, MDE

The U. of M. RAMMP Team

Take Home Messages

- We've made tremendous progress in reducing ozone over the past 5 years
- Attaining the 8-Hour Standard by 2010 continues to be a challenge for much of the OTR
- Complying with an even tougher ozone standard will be even more challenging
- The NOx reduction programs for power plants are working – working very well

